
Abstract
Most current digital photogrammetric workstations are based
on feature points. Curved features are quite difficult to be
modeled because they cannot be treated as feature points.
The focus of the paper is on the photogrammetric modeling
of space linear features. In general, lines and curves can be
represented by a series of connected points, so called,
generalized points in the paper. Different from all existing
models, only one collinearity equation is used for each point
on the linear curve, which makes the mathematical model
very simple. Hereby, the key of generalized point photogram-
metry is that all kinds of features are treated as generalized
points to use either x or y collinearity equation. A signifi-
cant difference between generalized point photogrammetry
and conventional point photogrammetry is that image
features are not necessarily exact conjugates. The exact
conjugacy between image features and/or the correspon-
dence between space and image feature are established
during bundle block adjustment. Photogrammetric modeling
of several space linear features is discussed. Sub-pixel
precision has been achieved for both exterior orientation
and 3D modeling of linear features, which verifies the
correctness and effectiveness of the proposed approach.

Introduction
The collinearity equation among photographic center,
space feature point, and the corresponding image point is
the basic formulation of photogrammetry (Kraus, 1993;
Mikhail and Bethel, 2001). It is called point photogram-
metry (Guelch, 1995). Photogrammetric manipulation of
imagery is a point-based operation. But points in pho-
togrammetry mean only physical or visible points, such
as dots, crosses, and corners. The main feature, which can
be effectively measured, is a physical point in analogue,
analytical, and digital photogrammetry.

Mulawa and Mikhail (1988) introduced the concept of
linear feature and presented the formulation for photogram-
metric observations and analytical linear features, such as
straight lines and conics, in photogrammetric treatments.
They chose to represent the 3D line by a point along the line
and its direction vector. However, this representation is not
unique. So, two constraints were applied: the norm of the
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direction vector was chosen as unity and the point along the
line was chosen as the closest point to the origin.

There are many straight lines in architectural, archaeo-
logical, and industrial photogrammetry. If a space line is
observed, the corresponding image line should lie in the
plane determined by the photographic center and the space
line, the so called coplanarity equation. The conventional
point photogrammetry is not suitable for these applications.
So interest in line photogrammetry based on the coplanarity
equation and hybrid point-line photogrammetry based on
both collinearity and coplanarity equations has greatly
increased in the past years (Debevec, 1996; Baillard and
Zisserman, 1999; Heuvel, 2003; Zhang et al. 2005).

High-level linear features, such as roads, rivers, and
lakes in aerial photogrammetry, or line segments, circles and
curves in architectural and industrial applications, are more
useful for subsequent processes since they contain more
information than feature points. Coordinate transformation
techniques with linear features are discussed by Mikhail and
Weerawong (1997). Geometric constraints among linear
features, which are very important in photogrammetric
treatments, are also analyzed.

The use of linear features is especially applicable in
mapping and updating of constructed areas, since man-made
objects include lots of linear curves. Also, natural objects
like riverbank lines and coastlines as well as vegetation
boarders offer a good possibility to apply feature-based
approach (Heikkinen, 2002). In change detection and map
updating with images, the correspondence between vector
map and image features have to be determined for exterior
orientation. Usually, ground control points and the corre-
sponding image points are manually selected from the vector
map and the image. Then, the image parameters can be
determined by the space resection process. However, few
apparent points can be identified in the map, which makes
this solution less efficient in most cases. It is advantageous
if the linear features can be used as control information.

Free-form linear features are used as control information
in single photo resection by Habib et al. (2003a). One-to-one
correspondence between image and object space primitives
is not needed for the proposed approach since it is based on
the modified iterated Hough transformation. Linear features
are used for exterior orientation of linear-scanner satellite
images with affine transformation model by Zhang et al.
(2004). Although promising results have been achieved, the
proposed model cannot deal with traditional aerial images.
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Straight lines and linear features are successfully used as
control information in aerial triangulation by Schenk (2004)
and Akav et al. (2004), respectively.

However, the reconstruction of space linear features is
still in an early stage, because they cannot be effectively
measured by current digital photogrammetric workstations.
Dey and Wenger (2001) proposed a technique to recon-
struct a planar curve by sharp corners. In spite of its good
performance, the theoretical guarantee of the algorithm
could not be proved (Dey and Wenger, 2001). An automatic
relative orientation approach with linear features is pre-
sented by Habib and Kelley (2001); then, the points on
the 3D curve are determined by forward intersection with
conjugate image points (Habib et al., 2003b). The prob-
lem is the difficulty to identify conjugate points along the
curve. Thus, pruning techniques are used to resolve the
ambiguities.

The model of generalized point photogrammetry is
discussed in the next section. Then models of several
linear features with generalized point photogrammetry are
presented. Afterwards, experiments of exterior orientation
by matching between vector and image, reconstruction of
circles and rounded rectangles, and 3D modeling of space
curves are presented. Finally, conclusions are briefly
outlined.

Model of Generalized Point Photogrammetry
In conventional point photogrammetry, collinearity equa-
tions are used for physical points (Mikhail and Bethel,
2001):

(1)

(2)

where x and y are the observations, X, Y, and Z the
coordinates of ground point, ai, bi, ci (i � 1, 2, 3) the
orientation matrix composed of rotation angles w, v, and k
where the Y-axis is taken as the primary axis, and XS, YS,
ZS, w, v, k, f, x0, y0 are the exterior and interior parame-
ters. If p1, . . . ,pn are additional parameters incorporated
into the collinearity equations, the linearized observation
equations can be written as:

(3)

(4)

where vx, vy are the corrections of observations, �X, �Y, �Z
the corrections of ground point, �XS, �YS, �ZS, �w, �v, �k,
and �f, �x0, �y0 are the corrections of exterior and interior
parameters. Coefficients of unknowns are:
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� c21�p1 � � � �  � c2n�pn � ly

� a27�f � a28�x0 � a29�y0 � b21�X � b22�Y � b23�Z

 vy � a21�Xs � a22�Ys � a23�Zs � a24�w � a25�v � a26�k 

� c11�p1 � � � �  � c1n�pn � lx

  � a17�f � a18�x0 � a19�y0 � b11�X � b12�Y � b13�Z  
 vx � a11�Xs � a12�Ys � a13�Zs � a14�w � a15�v � a16�k 

y � y0 � f 
a2 (X � XS) � b2 (Y � YS) � c2 (Z � ZS)
a3 (X � XS) � b3 (Y � YS) � c3 (Z � ZS)

x � x0 � f 
a1 (X � XS) � b1 (Y � YS) � c1 (Z � ZS)
a3 (X � XS) � b3 (Y � YS) � c3 (Z � ZS)

where lx � x � (x) and ly � y � (y), where (x) and (y) are
computed from Equations 1 and 2 with approximate camera
parameters and coordinates of ground features.

If the above collinearity equations are used to determine
3D objects, conjugate image points have to be identified. All
the current digital photogrammetric workstations are based
on the collinearity equations. However, matching between
point features is more difficult than matching between linear
features. Debevec (1996) proposed a hybrid geometry- and
image-based approach to reconstruct architectures. As shown
in Figure 1a, error between the observed image edge {(x1, y1),
(x2, y2)} and the predicted image line is defined as the
shortest distance hs from a point p(s) on the segment to the
predicted line (Debevec, 1996). This definition leads to an
integral error function, which is difficult to be incorporated
into the collinearity equations.

Same as that of Debevec (1996), most current methods
deal with linear features by minimizing the distance between
a point and a linear feature. However, the mathematical
model is very complicated and difficult to be used for
mass data block adjustment. Moreover, 3D reconstruction of
curved features seems more difficult with this strategy. The
situation would be much better if the distance defined above
is divided into two components along the x-axis and y-axis
of the image coordinate system. The disparity between the
predicted and observed line can be calculated in a simple
way. dx1 (dy1) and dx2 (dy2) represent the difference from the
two end points of the image edge to the predicted line along
the x-axis (y-axis), as shown in Figure 1a and 1b, respec-
tively. Instead of using h1 and h2 as the error function, dx1
and dx2 or dy1 and dy2 are used if the slope of the observed
edge is larger than 1.0 (the angle of inclination a of a edge is
in the range 45° � a � 135° or 225° � a � 315°) or smaller
than 1.0 (the angle of inclination a of a edge is in the range
135° � a � 225° or �45° � a � 45°), respectively, because
the vertical shift dy or horizontal shift dx of the edge has a
limited contribution to minimize the disparity between the
predicted and observed line. This is the basic conception of
generalized point photogrammetry.

Different from all existing models, only one equation is
used for each observed generalized point in our model. Note
that in the above definition of error function, the biggest
advantage is that the exact conjugacy between image features
and/or the exact correspondence between space and image
feature is not a prerequisite for generalized point. More-
over, space lines and curves can be expressed by a series
of connected points. Hereby, the key of generalized point
photogrammetry is that all kinds of features are treated as
generalized points and incorporated into extended collinearity
equations.
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Figure 1. Model of generalized point photogrammetry: the error between the
(a) observed image edge, and (b) the predicted image line.

The most significant difference between generalized
point and physical point is that image features are not
necessarily conjugate ones for generalized point. Another
difference is that in the two collinearity equations x and y
are used for a physical point, while only one collinearity
equation x or y is used for a generalized point. Moreover,
the collinearity equation used by generalized point includes
the parameters of the space feature, for example the coordi-
nates of generalized point is expressed by parameters of
space features. When incorporated into the collinearity
equation, parameters of the interested object can be obtained
by bundle adjustment.

Modeling Linear Features with Generalized Point
Photogrammetry
In generalized point photogrammetry, parameters of space
features are incorporated into the collinearity equations.
The conjugacy between image features and/or the correspon-
dence between space and image feature are established
during the bundle block adjustment. The model of gener-
alized point photogrammetry for several kinds of linear
features, such as space circle, straight line, and curve will
be discussed in the following.

Circle
Six parameters, i.e., the center (X0, Y0, Z0), the orientation
(b, g, 0) and the radius R, are enough to determine a space
circle because the third rotation angle is of no influence and
thus treated as zero. In this case, the orientation matrix of
the plane where a circle lies in is:

(5)

so that any point on the space circle can be represented as:

(6)

where X0, Y0, Z0 the circle center, b and g the orienta-
tion angles of the plane in which the circle lies, and R the
radius. u varies from 0 to 360 degrees for a circle, or from

�X � R(cos b cos u � sin b sin g sin u) � X0

Y � R(cos g sin u                                 � Y0

Z � R(sin b cos u � cos b sin g sin u)� Z0

R	 � �
cos b �sin b sin g �sin b cos g

0 cos g �sin g
sin b cos b sin g cos b cos g

�

specific start to end angle for and arc. Incorporating Equa-
tion 6 into collinearity Equations 1 and 2 leads to:

(7)

(8)

The parameters in the above equations can be divided into
exterior orientation parameters and object related parameters.
In this case, the additional parameters are 

The coefficients of
exterior orientation parameters are the same as that of
Equations 3 and 4. The coefficients of object related parame-
ters could be obtained by partial derivatives in a similar way.

As shown in Figure 2a, a generalized point A is com-
puted from the circle parameter at angle u. The tangential
vector (with angle a) of the received image point a can be
determined. Equation 7 is used for exterior orientation or 3D
reconstruction if 45° � a � 135° or 225° � a � 315°;
otherwise Equation 8 is used.

Principally, two images are enough to reconstruct a
space circle, as shown in Figure 2b. Image points a1, a1	 and
a2, a2	 are conjugate points of the stereo. Points A1 and A2
on the space circle can be easily determined by forward
intersection. However, to ensure the stability and accuracy
of reconstruction, three or more overlapping images are
expected. If a circle is used for exterior orientation, the
unknowns of circle parameters are to be eliminated from the
observation equations.

Straight Line
If the plane where a space line lies in is unknown, sev-
eral parameters have to be introduced to represent the line.

p3 � Z0, p4 � b, p5 � g, and p6 � R.
p1 � X0, p2 � Y0,

y � y0 � f 

a2(X0 � R(cos b cos u � sin b sin g sin u)
� XS) � b2(Y0 � R(cos g sin u) � YS) � c2(Z0

� R(sin b cos u � cos b sin g sin u) � ZS)
a3(X0 � R(cos b cos u � sin b sin g sin u)
� XS) � b3(Y0 � R(cos g sin u) � YS) � c3(Z0

� R(sin b cos u � cos b sin g sin u) � ZS)

.

x � x0 � f 

a1(X0 � R(cos b cos u � sin b sin g sin u)
� XS) � b1(Y0 � R(cos g sin u) � YS) � c1(Z0

� R(sin b cos u � cos b sin g sin u) � ZS)
a3(X0 � R(cos b cos u � sin b sin g sin u)
� XS) � b3(Y0 � R(cos g sin u) � YS) � c3(Z0

� R(sin b cos u � cos b sin g sin u) � ZS)
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Figure 2. Circle reconstruction with generalized point photogrammetry: (a) a
generalized point A computed from the circle parameter, and (b) reconstruction of
a space circle from two images.

Although four independent parameters are enough to uniquely
present a space line segment L, six parameters are used for the
convenience of incorporating into collinearity equations:

(9)

where (X0, Y0, Z0) is the start point, (b, g, k) the direction
angle of the line, t the distance from a certain point on the
line to the start point, and a and b the range of parameter t.

Incorporating Equation 9 into collinearity Equations 1
and 2 leads to:

(10)

(11)y � y0 � f 

a2(X0 � t cos b � XS) � b2(Y0 � t cos g 
 � YS) � c2(Z0 � t cos k �ZS)
a3(X0 � t cos b � XS) � b3(Y0 � t cos g
� YS) � c3(Z0 � t cos k � ZS)

 
.

x � x0 � f 

a1(X0 � t cos b � XS) � b1(Y0 � t cos g 
 � YS) � c1(Z0 � t cos k �ZS)
a3(X0 � t cos b � XS) � b3(Y0 � t cos g
� YS) � c3(Z0 � t cos k � ZS)

 

�X � X0 � t�cos b
Y � Y0 � t�cos g
Z � Z0 � t�cos k

(a � t � b)

The coefficients of exterior orientation parameters in
Equations 10 and 11 are the same as that of Equations 3
and 4. The coefficients of object related parameters could be
obtained by partial derivatives in a similar way. One of the
two collinearity equations can be applied to each end point
of a straight line. As shown in Figure 3a, if the angle a
(defined by the direction of an image line against x-axis) of
the observed line l is in the range 45° � a � 135° or 225° �
a � 315°, Equation 10 is used taken dx1 and dx2 as the error
function, which represent the difference from the two
end points of the image edge to the predicted line along the
x-axis. Otherwise, Equation 11 is used taken dy1 and dy2 as
the error function, which represent the difference from the
two end points of the image edge to the predicted line along
the y-axis, as shown in Figure 3b. Note that any point on
the line except the two end points has no contribution on
minimizing the disparity. So, one image line can afford two
observation equations. All the six parameters should be
unknowns to determine a space line segment with at least
two stereo images. Caution must be exercised to avoid
viewing the straight line solely as an epipolar view. For
example, suppose that two images of an interested space
line fall into an epipolar line between two perspective
centers; then, the line cannot be determined.

Figure 3. Line reconstruction with generalized point photogrammetry representing
the difference from the two end points of the image edge to the predicted line
along (a) the x-axis (Equation 10), and (b) the y-axis (Equation 11).
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If space lines are used for exterior orientation, the line-
related unknowns should be eliminated from the observa-
tion equations. In this case, the space resection process
only requires a minimum of three straight lines. However,
the degenerate cases must be avoided. For example, three
parallel lines or three lines that intersect at a common point
will not give a unique solution.

Curve
Usually, a space curve can be parameterized as:

(12)

where f(t), g(t), and h(t) the locus of points on the space
curve as a function of curve parameter t, ranging from a to b.
Incorporating Equation 12 into Equations 1 and 2 leads to:

(13)

(14)

Suppose the tangential vector of a point on the observed
image curve is a (as shown in Figure 4), Equation 13 is
used for exterior orientation and 3D reconstruction if 45° �
a � 135° or 225° � a � 315°, otherwise Equation 14 is
used. The above model can be used for exterior orientation,
reconstruction of space curves, or both of them in a bundle
block adjustment.

For exterior orientation, the space curves need not to
be analytical ones. They could be arbitrary free form lin-
ear features as long as they can be represented by a series
of connected points. The disparity between the observed
image feature and the projected space feature is smaller
and smaller during iterations, an artist impression is shown
in Figure 4a, 4b, 4c, and 4d, respectively. The disparity

y � y0 � f 
a2(f(t) � XS) � b2(g(t) � YS) � c2(h(t) � ZS)
a3(f(t) � XS) � b3(g(t) � YS) � c3(h(t) � ZS)

.

x � x0 � f 
a1(f(t) � XS) � b1(g(t) � YS) � c1(h(t) � ZS)
a3(f(t) � XS) � b3(g(t) � YS) � c3(h(t) � ZS)

�X � f(t)
Y � g(t) (a � t � b)
Z � h(t)

usually converges within several iterations. If a space curve
is photographed in at least two stereo images, the image
parameters and the model of the curve may be solved by
an iterative bundle adjustment with Equations 13 and 14
simultaneously. To ensure the stability of adjustment,
more than two overlapping images are expected. However,
one should be careful that the parameter a and b in Equa-
tion 12 have to be known for opening curves, while it is
not necessary to be known for closed curves, such as circles
and ellipses. Degenerate cases must be avoided to recon-
struct the linear curves. For example, the perspective center
falls in the plane where a 3D planar curve lies. In this case,
the image feature will be an edge instead of a curved linear
feature.

Experiments of Modeling Linear Features
From the principle described above, it is easy to combine
physical points, straight lines, circles, and linear curves
into one adjustment model. This model is possible for
reconstruction of space features that can be represented
by mathematical models. The advantage of using linear
features is that one is more likely to find geometric con-
straints among linear features than among point features.
In order to stabilize the adjustment procedure, geometric
constraints among selected object features, such as perpendi-
cular features, parallel lines, same end points, coplanar
features, etc., should be added into the bundle adjustment to
solve the parameters of multiple features simultaneously.

Exterior Orientation with Linear Features
One of the key procedures in map updating is how to
fully utilize the information extracted from vector map to
determine the image orientation parameters. However, few
apparent points can be identified in the map, which makes
the map updating process less efficient. Therefore, instead of
selecting control points manually, taking widely existing
free-form linear features as control information is very
important to improve both efficiency and accuracy. Different
from Zhang et al. (2004) that concentrate on linear-scanner

Figure 4. Iterative curve reconstruction with generalized point photogrammetry.
An artistic impression of the disparity between the observed image feature and
the projected space feature becoming smaller and smaller in (a), (b), (c), and (d),
respectively. A color version of this figure is available at the ASPRS website:
www.asprs.org.
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Figure 6. Initial correspondence between space and
image linear features of the subject area.

satellite images, traditional aerial frame images are consid-
ered in this paper. Usually, three control points is enough to
establish coarse correspondence between the image and
space linear features, then image parameters can be deter-
mined by minimizing the disparity between the image and
space linear features with the previously described model.

In the test area, aerial frame images are taken at a scale
1:15 000 and scanned with 0.025 mm pixel size. The scale
of vector data is 1:10 000, i.e., the precision of vector data is
a little bit higher than 2 meters. The point in Figure 5 is one
of three manually-measured control points (about five pixel
accuracy) to determine the initial image parameters. The
linear features are the projected space features with the
image parameters determined by the three control points.
In this step, the corresponding image features are usually
more than 20 pixels away from the projected space features.
It is easy to imagine that the farther the distance from
control points, the larger the disparity between image and
projected space feature. However, it is enough to represent
the initial correspondence between space and image fea-
tures. A representative region is highlighted by bold rectan-
gle, and separately shown in Figure 6. The linear features
around the road center are the extracted image features.
Although five times zoomed out, there are significant
disparities between the image and projected space features
because image parameters obtained from the three control
points are not accurate enough. Figure 7 shows the final
projections of linear features after exterior orientation with
the control linear features. Precision of exterior orientation
with linear features is about 1.0 pixel. It is clear that the
vector data is well fitted to the image features.

After determining the parameters of a stereo pair by the
above strategy, ground checkpoints measured from the
vector map are used to evaluate the precision of exterior
orientation. The image points corresponding to each check-
point are manually measured. Then, the 3D coordinates of
each checkpoint are computed by forward intersection with
the above determined image parameters. Afterwards, the 3D
coordinates are compared with the ground truth. The root
mean square error of checkpoints is listed in Table 1. As can
be seen, the error statistics of checkpoints is comparable

with the precision of vector map. Moreover, the error
statistics of the image pair with the checkpoints shown in
Table 2 indicate that the RMSE of residues of image points
also lays on pixel level, which shows that the proposed
approach is feasible for exterior orientation with control
linear features.

Reconstruction of Circles and Rounded Rectangles
Automatic inspection of complex shapes such as circles and
rounded rectangles on industrial parts is quite important for
quality control. The proposed model of generalized point
photogrammetry is successfully applied to reconstruct
circles and rounded rectangles. The inspection platform is
composed of a rotating table and a pre-calibrated CCD camera
(see Zhang et al., 2006 for more detail). The part to be
inspected is put on the center of the table. Images are taken
while the table rotating against its axis under computer

Figure 5. Initial projection of space linear features
and the subject area. A color version of this figure
is available at the ASPRS website: www.asprs.org.

Figure 7. Projections of space linear features after
exterior orientation. A color version of this figure is
available at the ASPRS website: www.asprs.org.
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TABLE 1. ERROR STATISTICS OF EXTERIOR ORIENTATION WITH

CONTROL LINEAR FEATURES (METERS)

Components X Y Z

RMSE 1.63 1.36 1.87

TABLE 2. ERROR STATISTICS OF IMAGE CHECK POINTS (PIXELS)

RMSE 1.02
x Max 1.63

Left Min �0.06
Image RMSE 0.54

y Max 0.90
Min 0.09

RMSE 0.92
x Max �1.72

Right Min 0.16
Image RMSE 0.84

y Max 1.32
Min 0.22

Figure 8. Measurable 3D geometric model.

control. Based on generalized point photogrammetry, not
only straight lines but also circles and rounded rectangles
can be reconstructed accurately. The reconstruction process
is subdivided into two steps. First, the wire-frame model of
the industrial part and the corresponding image parameters
are obtained by a bundle block adjustment. Afterwards,
the circles and rounded rectangles are reconstructed accord-
ing to the obtained image orientation parameters. Several
constraints, such as coplanarity, perpendicularity, and
connectivity are added in the bundle adjustment. One image
of a sheetmetal part is shown in Figure 8. Since the purpose
of this paper is to deal with complex shapes, the wire-frame
model of the part is reconstructed with the model of hybrid
point-line bundle adjustment. Image orientation parameters
are also treated as known. The subject circle and rounded
rectangle are highlighted with rectangle in Figure 8 and
separately shown in Figure 9. Different from (Zhang et al.,
2006) that uses both x and y direction error equations, only
one equation (either x or y as described in the previous
section) is used to reconstruct circles and rounded rectan-
gles, After reconstructed by the proposed model, projections
of the circle and rounded rectangle are shown in Figure 9.
Although such entities are very small, the reconstructed
models are well fitted to the image features. Accuracy of

reconstruction is comparable with that of (Zhang et al.,
2006), which verifies the correctness of the proposed model.
Nevertheless, the mathematical model proposed in this
paper is simpler than that of Zhang (Zhang et al., 2006).

Reconstruction of Curving Buildings
3D reconstruction and texture mapping of buildings are
the main contents of 3D city modeling. Reconstruction of wire-
frame building models that composed of straight-line segments
with coarse-to-fine strategy is presented by Zhang et al. (2005).
Complex buildings are also very important for city modeling.
However, it is not possible to reconstruct complex (such as
curving) buildings with the model proposed by Zhang et al.
(2005) because only straight lines and feature points can be
processed. Nevertheless, the model of generalized point
photogrammetry proposed in this paper is capable of recon-
structing these kinds of objects. The general strategy is the
same as that of Zhang et al. (2005), which includes aerial
triangulation, initial model generation, and coarse-to-fine
modeling. The most important improvement is that modeling
of generalized point photogrammetry is used to deal with
complex shapes. The same data source as that of Zhang et al.
(2005) is used for experiments in this paper. The ground
resolution of stereo images is about 0.2 m. The precision
of aerial triangulation is about 0.3 pixels, i.e., 0.06 m. To
facilitate the process of 3D reconstruction, image parameters
are treated as known since they are obtained from aerial
triangulation. In this paper, complex buildings are presented
by mathematical curves together with wire-frame model.
Seven adjacent images are used to reconstruct this complex
building. Figure 10 shows four image blocks of four adjacent
images which contain the interested curving building. As
shown in Figure 10, the curving part of the roof is flat, and
thus it is assumed that all points on the curving feature have
the same height Z � Z0, so the curving feature of the roof is
modeled as a cubic curve Y � Y0 � a1(X � X0) � a2(X � X0)2

� a3(X � X0)3, where (X0, Y0, Z0) is the starting point of the
curve and also the end point of another line segment. Then,
the 3D building model can be obtained from stereo pairs.
In order to stabilize the adjustment procedure, constraints
of perpendicular, parallel, coplanar, horizontal, and vertical
among line segments and curves are added to solve the
parameters simultaneously. Furthermore, the end points of
cubic curves are also start points of roof edges. These con-
straints are vital to reconstruct the whole model uniquely. As

Figure 9. Projection of circle and
rounded rectangle.
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Figure 10. Four image blocks containing the subject curving building.

shown in Figure 11, the white lines and linear curves, which
are projected with the reconstructed model, are well fitted to
the image features. The accuracy of reconstructed building is
about 0.15 m, slightly higher value than the image resolution.

Conclusions
The model of generalized point photogrammetry is pro-
posed in this paper. The proposed approach can incorporate
physical feature points, straight lines, circles, and linear
curves into one mathematical model. The advantage of using
linear features is that one is more likely to find geometric
constraints among linear features than among point features.
The biggest difference between generalized point photogram-
metry and conventional point photogrammetry is that image
features are not necessarily conjugate ones in generalized
point photogrammetry. The exact conjugacy between image
features and/or the correspondence between space and image
feature are established during bundle block adjustment.

The proposed approach is capable of modeling space
features that can be represented by analytical mathematical
models. While for the space resection process, the control
features can be any free-form linear features. The parameters
of aerial stereo images are successfully obtained with free-
form control linear features. Sub-pixel precision is achieved
when handling complex buildings.

However, much attention should be paid to the model-
ing of linear features. If space lines are used for exterior
orientation, the space resection process only requires a
minimum of three straight lines, but, the degenerate cases
must be avoided. For example, three parallel lines or three
lines that intersect at a common point will not give a unique
solution. Degenerate cases must also be avoided to recon-
struct linear curves. For example, the perspective center falls
in the plane where a 3D planar curve lies. In this case, the
image feature will be an edge instead of a curved linear
feature.

To ensure the stability of adjustment, more than two
non-degenerate stereo images are required. Furthermore,
geometric constraints among selected object features, such as
perpendicular features, parallel lines, same end points,
coplanar features, etc., should be added into the bundle
adjustment. Otherwise, the result is unstable or even
impossible to solve for the parameters of space features.
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