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Abstract
A flexible new camera calibration technique

using 2D-DLT and bundle adjustment with planar
scenes is proposed in this paper. The equation of
principal line under image coordinate system
represented with 2D-DLT parameters is educed using
the correspondence between collinearity equations
and 2D-DLT. A novel algorithm to obtain the initial
value of principal point is put forward in this paper.
The practical decomposition algorithm of exterior
parameters using initial values of principal point,
focal length and 2D-DLT parameters is discussed
elaborately. Planar-scene camera calibration
algorithm with bundle adjustment is addressed. For
the proposed technique, either the camera or the
planar pattern can be moved freely, and the motion
need not be known. Very good results have been
obtained with real data calibration. The calibration
result can be used in some high precision applications,
such as reverse engineering and industrial inspection.

Keywords: camera calibration, 2D-DLT, bundle
adjustment, planar grid, critical motion sequences,
lens distortion

1.  Introduction
Direct Linear Transformation is developed by Abdel-
Aziz (Abdel-Aziz et al, 1971). It is a well-known
method used in close-range photogrammetry and
other areas for its no need for initial values of camera
interior and exterior parameters. Calibration of
cameras is a prerequisite for the extraction of precise
three-dimensional information from imagery in
Photogrammetry, Computer Vision and other areas.
Much work has been done in the photogrammetry
community (Fang-Jenq Chen, 1997; Zhaoguang Zhu
et al, 1995; Zhizhuo Wang, 1990), and also in
computer vision (e.g. Tsai, 1987; Bill Triggs, 1998; P.
Sturm, 1997; SongDe Ma, 1998). A large number of
auto-calibration approaches have been discussed by
  

  
computer vision circles, but in some cases, the result
of auto-calibration can not be determined uniquely,
which differs from the true value remarkably even
with low noise level (Maolin Qiu, 2000).

Triggs developed a self-calibration technique
from at least 5 views of a planar scene (Bill Triggs,
1998), but this technique has difficulty to initialize.
Zhang put forward a camera calibration technique for
planar scenes based on the orthonormal property of
the rotation matrix (Zhengyou Zhang, 1998).

3D-DLT is widely used for camera calibration
(e.g. Fang-Jenq Chen, 1997), but no 2D-DLT-based
calibration paper has been published in the literature.
This paper mainly focuses on camera calibration
technique using 2D-DLT and collinearity equations
with planar scenes. The proposed technique only
requires the camera to view a planar pattern at a few
(at least two) different orientations. We can move
either the camera or the pattern freely, and the motion
need not be known.

The equation of principal line represented by
2D-DLT parameters is worked out using the
correspondence between collinearity equations and
2D-DLT parameters in section 2, which shows that
initial value of principal point can be obtained with at
least two equations of principal lines. The
decomposition algorithm of exterior parameters using
initial values of principal point, focal length and 2D-
DLT parameters is discussed elaborately also in
section 2. In section 3, planar-scene camera
calibration algorithm with bundle adjustment (using
collinearity equations) is addressed. Real image data
are used to test the proposed technique in section 4.
Very good results have been obtained, which verifies
the feasibility of the proposed planar camera
calibration technique. Section 5 gives some
conclusions of this paper. Proof of ambiguity in
camera interior parameter decomposition with single
image 2D-DLT parameters is given in appendix A. In
appendix B, proof of Critical Motion Sequences
(CMS) for calibration is given detailedly.

   



2.  2D-DLT and Initial Values
2D-DLT can be written as (Wenhao Feng 2002)
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where � �ThhhhhhhhH 87654321 ,,,,,,,�  is the

2D-DLT parameters, YX ,  the space point under

world coordinate system (where Z=0) and yx,  the
corresponding image point.

Given an image of model plane, the values of
transformation parameters can be estimated by

0�AH . The solution is well known to be the

eigenvector of AAT  associate with the smallest
eigenvalue (or equivalently, the right singular vector
of A  associate with the smallest singular value). In
order to eliminate the influence of gross errors which
may be introduced by miss-match of image points
and the corresponding model points, the parameters
can be refined with an iterative least-square method
with linearised equation (1).

The mostly used collinearity equations in
photogrammetry can be written as (Zhizhuo Wang,
1990)
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where fyx ,, 00  are the interior parameters,

SSS ZYX ,,  the position of camera, ZYX ,, the space

point under world coordinate system (Z = 0 for planar
grid), yx,  corresponding image point and

}3,2,1,,,{ �� icbaR iii  the rotation matrix com-

posed of three rotation angles� ,� , �

Equation (2) can be written as
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where � �sss ZcYbXa 333 ���� .

Comparing equation (1) with equation (3), we
have
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From equation (4), equation (5) and equation (7)
we can obtain the following equations
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Multiplying the upper and lower parts of
equation (8), equation (9) and equation (10)
respectively, considering 0332211 ��� bababa ,

we obtain
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If the principal point ( 00 , yx ) is known or

obtained with certain approaches, the focal length can
be obtained as follows
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Self-multiplying each items of equation (8),
equation (9) and equation (10), taking
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Focal length f can be canceled out using

  



equation (11) and equation (13), then we have
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In most cases, the principal point is different
from the image center. There are totally 9 interior and
exterior parameters ),,,,,,,,( 00 sss ZYXyxf ���

of a camera when ignore lens distortion, skew and
aspect ratio, so these 9 parameters can not be
decomposed uniquely from the 8 parameters of 2D-
DLT. Theoretically, the principal point ( 00 , yx ) can

move freely on the principal line of image, proof is
given in appendix A.

Equation (14) can also be written in the form of
� �� � c

T
yx LyxLL �00 . As we know, the

principal point always lies on the principal line of
image (Zhaoguang Zhu et al, 1995), so if we have at
least two nonparallel principal lines, the principal
point 00 , yx  can be obtained by solve the over-

definite linear equation cXL � .

Note that we should avoid the so-called Critical
Motion Sequences (Sturm, 1997). 2D-DLT
parameters among images are linearly correlated in
the case of image sequences taken with a fixed
camera while the planar grid is rotating around Z-axis.
All the principal lines actually overlap each other.
The principal point can not be obtained from these
lines. In practice, we only need to change the
orientation of the camera from one snapshot to
another when the table turns around Z-axis. Proof is
given in appendix B.

After 2D-DLT parameters, focal length and
principal point are determined, the initial values of
camera exterior parameters can be decomposed as
follows.

Replace�  in equation (8) and equation (9) with
which derived from equation (10), we have
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we obtain 
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from equation (15) since 12
3

2
2

2
1 ��� bbb .

As we know, 21tan bb�� , from equation

(15) we have 08508221tan yhhxhhbb ����� ,

so �  can be determined uniquely.
The value of 3b  can initially take the positive

value of the square root. Compare �  determined

above with '�  calculated from 1b  and 2b
corresponding to positive 3b  from equation (15). If

'! ��� , 3b  should take the negative value of the

square root, then 1b , 2b  and �  can be determined

from equation (15) and 3sin b���  respectively.

Using the knowledge that the row vectors of
rotation matrix are orthonormal, we have
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we have 
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where 1b  and 2b  have been determined along with

� , 31 aa  and 32 aa  are already determined in

equation (15), so �  can also be determined.

The values of �  determined from equation (8),
equation (9) and equation (10) can be averaged to get
the mean value, then from equation (6) and the
definition of � , we have
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This linear equation can be easily solved to
obtain the initial values of SX , SY and SZ . Note, as

shown in above, not all the 9 elements of rotation
matrix are calculated when determine � ,�  and� .

So elements of the rotation matrix should be
recalculated through � ,�  and �  to derive the

values of SX , SY and SZ .
  



3.  Calibration with Bundle Adjustment
Bundle adjustment is the problem of refining a

visual reconstruction to produce jointly optimal 3D
structure and viewing parameter (camera pose and/or
calibration) estimates (Bill Triggs, et al, 1999). It is
widely used by photogrammetry and computer vision
communities. Generally, lens distortion is larger in
non-metric cameras than in metric ones, which must
be determined in calibration along with the interior
and exterior parameters. Skew of the two image axes
will be ignored in the camera model since it is very
close to 0 in most current cameras. The left part of
collinearity equation (2) should consider lens
distortion:
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where � � � �2
0

2
0

2 yyxxr ���� , K1 and K2 are the

first two orders of radial distortion, P1 and P2 are
decentering distortion. xf and yf are focal length

in x and y directions when suppose the values may be

different in two directions.
Linearise equation (2) and (18), error equations

of calibration can be written as
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After the initial values of camera parameters are

determined, they can be refined with bundle
adjustment. Due to the non-linear characteristics of
the problem, iterations need to be performed. The
corresponding items of X� , Y�  and Z�  can be
removed if the control points are considered to be of
no errors. The status of normal equation is generally
ill conditioned, so parameters should be weighted
properly to ensure the stability of calibration results.

  

4.  Real Data Experiment
The proposed technique is tested with real image

data. The planar grid (about 45cm*45cm) rotates
along with a table which turns around its vertical axis.
8 images are taken, one of them is shown in figure 1,
the crosses are the match points. There are 900
designed corners in the planar grid, and the precision
of each designed coordinate is about 0.3mm. It is
quite easy for mechanical engineering researchers or
industries to make such a grid. The image resolution
of the CCD camera to be calibrated is 1300 pixels
*1030pixels. Image corners are detected as the
intersection of straight lines fitted to each square with
precision of higher than 0.1 pixel.

Fig.1. One of the images used for calibration

Tab.1. Estimated results of real image data (pixel)
Items fx fy x0 y0

Estimated 4426.135 4418.137 652.120 514.730

RMS 0.201 0.228 0.080 0.081

Items K1 K2 P1 P2

Estimated -7.416e-009 -4.522e-015 6.489e-007 6.684e-007

RMS 1.162e-010 1.828e-016 4.654e-008 1.251e-008

There are about 500 grid points visible in each
image. As we know, planar grid coordinates should
be taken as weighted-unknowns in the rigorous
bundle adjustment in order to eliminate the influence
of imprecision of the designed grid coordinates and to
get more precise camera parameters. The unit weight
RMS of calibration result of the rigorous bundle
adjustment is 0.08 pixel. Values and errors of interior
parameters are shown in table 1.

It can be seen from table 1 that the principal
point is very close to image center, and RMS errors
are below 0.1 pixels. The aspect ration is 0.9982, i.e.

  



the pixels are nearly square. As can be calculated
from the values in table 1 and equation (18), the
maximum lens distortion is about 3 pixel. The
deviations between detected image points and
projected ones with the calibrated camera parameters
and grid coordinates are also calculated. The RMSs
of the deviations are about 0.1 pixels for all the 8
images, equivalent to about 0.03mm for the planar
grid coordinates, which indicates the precision the
proposed technique. The calibration algorithm has
been successfully used in visual inspection system of
industrial sheetmetal parts.

  

5.  Conclusions
In this paper, we proposed a new technique for

camera calibration. The proposed technique only
requires the camera to observe a planar pattern at a
few (at least two) different orientations. Either the
camera or the pattern can be moved freely, and the
motion need not be known. Compared with classical
techniques that use expensive equipment such as
special calibration field, the proposed technique is
considerably flexible.

The proposed technique consists of two steps. In
the first step, initial values are decomposed from 2D-
DLT parameters. Then these initial values are refined
in the second step with an iterative linear bundle
adjustment using collinearity equations based on
least-square criterions.

Real image data have been used to test the
proposed technique, and very good results have been
obtained. The proposed algorithm has been used in
industrial inspection successfully.

      

Appendix A: Ambiguity in Decomposition
Consider the rotation matrix composed

of ��,,A  where Z-axis is taken as the primary axis

(Zhizhuo Wang, 1990), 21tan cc�� , where �  is

the angle between principal line and y-axis.
Substituting the corresponding items of equation (16)
into 21tan cc��  results in
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Substituting the corresponding items of equation

(15) in the above equation results in
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Equation (14) can be represented in the form of

a line CAxy �� 00 , where 
7584

7281
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is the slope of the line and �  is the angle between
the line and x-axis. Obviously, ��� tan1tan ,

which means ����
090 , i.e. equation (14) is

actually the equation of principal line in image.
Clearly, as long as the principal point locates on the
principal line, each group of decomposition is valid
for the perspective relationship, i.e. the camera
parameters can not be decomposed uniquely from
single image. Mathematically, it is impossible to
calibrate a camera completely from single image of a
planar pattern without any other information.

   

Appendix B: Proof of CMS with Fixed
Camera and Turntable
Under the pinhole model, projection relationship

between image and planar pattern can be written as
(Zhengyou Zhang, 1998):
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where A is called the camera interior matrix, 21,rr
and t are the first two columns of rotation matrix and
camera translation respectively. � �trrAH 21�  is
called Homography between the model plane and
image. It is obvious that equation (a) is actually the
equation of 2D-DLT when scale s is canceled out
with the third row. So 2D-DLT parameters are
equivalent to homography matrix while 1 is taken as
the ninth element. So we take the form of
homography for 2D-DLT parameters. two rotation
matrix are related by
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where �  is the angle of the relative rotation. We will
use superscript (1) and (2) to denote vectors related to
image 1 and 2, respectively. Substitute equation (b)
into � �trrAH 21�  results in
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As we know, the principal line in image can be
represented in the form of CAxy �� 00 , and the

slope of this line can be written as follows
� � � �75847281tan hhhhhhhh �����     (d)

where � is the angle between the principal line and
x-axis.

Substitute corresponding items of equation (c) in
equation (d) result in
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Similarly. Clearly, two principal lines are mutually
parallel to each other. Further more, C can be written
as follows from equation (14)
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From equation (c) we can obtain )1()2( CC �

without difficulty. So it is obvious that the two
principal lines are actually overlapped lines under
image coordinate system, which indicates that
principal point can not be obtained from these
overlapped lines. In practice, we only need to change
the orientation of the camera or the model plane from
one snapshot to another to avoid critical motion
sequences.
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