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1. Introduction 

The potential 48-satellite constellation offered by 
the combination of observations from both the Global 
Positioning System (GPS) and the Global Navigation 
Satellite System (GLONASS) has created 
considerable interest among existing GPS users and 
communities all over the world. The satellite’s 
constellation and the signal in space of both 
GLONASS and GPS are comparable. It is well known 
that the GPS/GLONASS combination has better 
characteristics in terms of availability, accuracy, 
integrity, and so on. 

However, the combined use of these satellite 
systems raises problems that must be considered. The 
GLONASS system time and reference frame are 
different from that of GPS. Moreover, to distinguish 
among individual satellites, GLONASS satellites 
employ different frequencies to broadcast their 
navigational information, which make existing GPS 
data processing software unable to process 
GLONASS observations.  

A number of works have been done considering 
the forenamed problems. The system time and 
reference frame differences between GLONASS and 
GPS have been addressed by Bykhanov [1]. 
Approaches and the corresponding precision on 
GLONASS broadcast orbit computation and 
transformation of WGS84/PZ-90 have been discussed 
(Misra [2]). Four different solutions of double 
difference carrier phase measurements have been 
discussed by Leick [3]. Methods of processing 
GLONASS and GLONASS/GPS observations have 
been discussed by Habrich [4].  

This paper mainly analyze the major errors and 
discuss their reduction approaches with respect to 
combined GPS/GLONASS positioning, such as the 
difference in the time reference systems, the errors of 
orbit integration and coordinate transformation, the 
influence of ionospheric delay and the approach of 
reduction. Errors related to GPS only positioning or 
very similar to that of GPS in combined 
GPS/GLONASS positioning, for instance, 
tropospheric delay, multipath error, Earth rotation and 
Earth tide errors are not discussed here. 

2. Resolving the Difference of System Time 

In combined GPS/GLONASS data processing, 
the difference between the two system times must be 
accounted for. Otherwise, systematic errors are 
introduced which will affect the combined positioning 
solution. To determine this difference in the time 
reference systems, a number of procedures are 
possible, and two of them will be discussed in the 
following. 

2.1 Introducing a Second Receiver Clock Offset 

Different receiver clock offsets are introduced 
with respect to GPS and GLONASS system time. 
These two clock offsets are instantaneously 
determined at each observation epoch together with 
the three unknowns of the receiver position. 

The simplified non-linear observation equation 
for a pseudorange observation to satellite S of an 
arbitrary system (GPS or GLONASS) at an observer 
R can be written as: 
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Expanded with Taylor series around an 
approximate position P0, we obtain the linearized 
equation 
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where S

RPR is observed pseudorange; c is speed of 
light; x0, y0, z0 are the approximate coordinates of 
receiver; xR, yR, zR  are the receiver’s true coordinates 
to be determined; xS, yS, zS are coordinates of satellite; 

Rtδ  is receiver clock offset with respect to system 

time; Stδ  is satellite clock offset with respect to 
system time and ( ) ( ) ( )20

2
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SSSS zzyyxx −+−+−=ρ  
is the geometric distance between the approximate 
position and the satellite position. 

With the receiver clock error SysRR ttt −=δ  

( Syst being the GPS or GLONASS system time, 
respectively) as one of the unknowns, it is clear that in 
combined GPS/GLONASS processing two receiver 
clock offsets have to be introduced, one for the 
receiver offset with respect to GPS time and one for 
that of GLONASS time. Such that two different 
observation equations are obtained for a GPS satellite 
i and a GLONASS satellite j: 
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where GPSRGPSR ttt −=,δ  and GLONASSRGLOR ttt −=,δ , 

GPSt  being the system time of GPS and GLONASSt  
being the system time of GLONASS. 
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Fig.1. RMSs of time difference between 

GLONASS and GPS with two clock offsets 

Due to the one more unknown as compared with 

GPS only positioning, an additional (fifth) observation 
is necessary to obtain a positioning solution. Since the 
combined use of GPS and GLONASS approximately 
doubles the number of observations, the sacrificing of 
one observation can easily be accepted. Equation (3) 
and (4) can be used to form the normal equation in 
order to resolve the five unknowns with conventional 
methods, such as least square adjustment or Kalman 
filtering. 

It should be noted that a solution of these 
equations is only possible if there are observations of 
both GPS and GLONASS satellites. If all but one 
observed satellites are from one system, with only one 
satellite observation for the second system, this 
additional observation only contributes to the second 
receiver clock offset and has no influence on the 
computed position.  

For this method, test has been performed with 20 
hours real data obtained with Legacy GPS/GLONASS 
dual frequency receivers in Nov. 1999, see [6] for 
more detail. To be compared with the next algorithm, 
the result of GPS time offsets are subtracted by 
GLONASS time offsets, and the RMSs of these 
differences are calculated as shown in figure 1. The 
average of RMSs of differences is about 40.0ns, 
slightly higher than reported by Bykhanov [1].  

2.2 Introducing the Difference of System Time 

Starting with the pair of Equations (3) and (4), 
the receiver clock offset with respect to GLONASS 
system time can be rewritten as: 

GLONASSGPSGPSRGLONASSRGLOR ttttttt −+−=−=,δ  (5) 
Equation (4) then transforms to  
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Principally, this method is equivalent to the one 

described in the former section, but it is more 
desirable. The fifth unknown parameter 
( GLONASSGPS tt − ) as the difference of system time is 
independent of receivers. When differences of the 
same kind measurements are formed between two 
receivers, this unknown cancels out. 
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Fig.2. RMSs of time difference between GLONASS 

and GPS with difference of system time 
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Similar to the case of two separate receiver clock 
offsets, a solution of these equations is only possible if 
there are observations of both GPS and GLONASS 
satellites. If all but one observed satellites are from 
one system, with only one satellite observation for the 
second system, this additional observation only 
contributes to the difference of system time frames 
and has no influence on the computed position. It is 
reasonable in both approaches to neglect the only one 
observation from the second satellite system in 
practical data processing. 

Test has also been done with the same data as the 
former section. The RMSs of differences of system 
time between GLONASS and GPS are shown in 
figure 2. Clearly, the average of RMSs of differences 
is very close to the former section, but the deviations 
are less than that of the former ones, which shows that 
introduce the difference of system time is more 
desirable.  

3. Orbit Integration and Coordinate 

Transformation 

Since GPS navigation and positioning have 
become the standard in Western countries and WGS84 
is more widely utilized than PZ-90, it is considered 
best to transform GLONASS saellite positions from 
PZ-90 to WGS84 in combined navigation and 
positioning, thus the user position is also obtained in 
WGS84. 

GLONASS broadcast ephemerides contain the 
satellite position in PZ-90 at a reference time, together 
with the satellite velocity and its acceleration due to 
luni-solar attraction. To obtain GLONASS satellite 
position at an epoch other than reference time, the 
satellite’s equation of motion has to be integrated. 

The error of GLONASS satellite coordinate is 
mainly composed of the error of orbit integration and 
the error of transformation parameters, which will be 
addressed in the following. 

3.1 Numerical Integration 

In compliance with Newton’s laws of motion, the 
motion of a satellite orbiting the earth is determined 
by the forces acting on it. The primary force acting on 
satellite is that caused by Earth’s gravity field 
potential. Expanding the non-spherical part of the 
gravational potential into spherical harmonics, taking 
the influence of earth rotation into account, assuming 
the acceleration of the satellite due to lunar and solar 
gravitation to be constant over a short time span of 
integration, and ignoring all other insignificant forces, 
the GLONASS satellite’s equation of motion can be 
finally written as [6]: 
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where zyx ,,  are the coordinates of satellite; 

LSLSLS zyx ′′′′′′ ,,  are the luni-solar acceleration; 
222 zyxr ++=  is distance of satellite to center 

of earth; ae  = 6378136 m is equatorial radius of earth; 
2314 /sm 103.9860044  GM ⋅=  is the gravitational 

constant of earth; -3
20 10-1.08263C ⋅=  is second 

zonal coefficient and 1510292115.7 −−⋅= sω  is 
rotation rate of earth. 

 
Fig 3. Discrepancy of forward and backward integration 

 
Tab. 1. Discrepancies between forward and backward orbit 

integration (m) 
Ste
p 

Comp
onents Max. Min. Average RMS

X 1.280 -1.004  0.005 0.812
Y 0.698 -2.158 -0.698 0.7340.1
Z 1.528 -1.205  0.453 0.985
X 1.257 -1.344  0.006 0.800
Y 0.668 -2.121 -0.681 0.7441.0
Z 1.549 -1.238  0.469 0.955
X 1.305 -1.044 -0.034 0.843
Y 0.642 -2.258 -0.612 0.69930.

0 Z 1.554 -1.253  0.368 0.915

The discrepancy between forward and backward 
integration of 15 min is shown in figure 3. The fourth 
order Runge-Kutta method is used for the numerical 
integration. table 1 shows the discrepancies between a 
forward integration (initial value is the broadcast 
position for epoch i) and a backward integration(initial 
value is the broadcast position for epoch i + 30 min) 
for the epoch i + 15 min, using three different 
integration step widths(0.1, 1 and 30 sec). The 0.1, 1 
and 30 sec integration step widths lead to nearly 
identical results, with the root-mean-square(RMS)s no 
more than 1 m for all components.  

3.2 Coordinate Transformation 

Considering the three-dimensional 
transformation between PZ-90 and WGS84, the well 
known 7 parameter Helmert transformation can be 
used: 
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(8) 
where 000 dZ ,dY ,dX  are coordinates of the origin 
of PZ-90 in frame WGS84; ZYX βββ ,,  is 
differential rotations around the axes (U, V, W) 
respectively; dm is differential scale change  

There are several possible methods to determine 
the transformation parameters from PZ-90 to WGS84.  
Three points known in both systems are 
mathematically sufficient to calculate the desired 
parameters. However, as much points as possible are 
desired to obtain a good quality of the derived 
parameters. For the computation of these parameters, 
ground-based techniques and space-based techniques 
are used by researchers [5].  

One of the most desirable parameters is given by 
Rossbach [5]. When applied to the station coordinates, 
this transformation yields a residual of 30-40 cm 
RMS. 
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(9) 
It is given by Bykhanov [1] that an internal 

coordinate system transformation accuracy of 0.3 m 
can be achieved. The accuracy of PZ-90 relative to 
WGS84 is confirmed by Earth rotation data collected 
in the Systems Control Center from GLONASS 
observations. These ERP (GL) differs from the 
respective ERP (IERS) by no more than 0.3 m.  
 The error with respect to GLONASS satellite 
coordinate is mainly composed of the error of orbit 
integration and the error of transformation parameters. 
So the synthetic influence of the two errors is about 1 
m, which is sufficient for close range differencing 
positioning. Combined GPS/GLONASS precise 
ephemerides are available in post processing 
positioning from IGEX.  

4. Ionospheric Correction 

Similar to GPS only positioning, ionospheric 
delay is also one of the major constraints in combined 
GPS/GLONASS precise positioning. But the 
ionospheric delay of L1 or L2 signal is different for 
different GLONASS satellites, whereas it is identical 
for GPS satellites, a reduction method applicable for 
combined GPS/GLONASS positioning has to be 
developed. Since GLONASS grants full access to the 
L2 frequency, it enables the properly equipped user to 
deal with the ionosphere problem by using 
dual-frequency ionospheric free carrier phase 
measurements. 
 The ionospheric path delay of a GPS or 
GLONASS satellite signal depends on the electron 
content of the ionosphere, the frequency of the signal 

and the distance that the signal travels through the 
ionosphere, which in turn depends on the satellite 
elevation. It can be written as: 
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where z is the zenith distance of signal at ionospheric 
piercing point; f is frequency of carrier signal; TEC is 
total electron content of ionosphere.  

The GLONASS observation equation for carrier 
phase measurements from receiver R to satellite S 
scaled in cycles can be written as: 
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where ( ) ( ) ( )222 S
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xR, yR, zR are coordinates of receiver; xS, yS, zS are 
coordinates of satellite; Sλ  is wavelength of carrier 
signal of satellite S; Sf  is frequency of satellite 

signal; S
Rϕ  is carrier phase measurement of receiver 

R to satellite S; S
RN is carrier phase ambiguity of 

receiver R to satellite S; Rtδ is the receiver clock 

offset with respect to system time; Stδ  is the 
satellite clock offset with respect to system time; 

TropS
Rt

,δ  is tropospheric delay of signal; IonoS
Rt

,δ  is 

ionospheric advance of signal; S
Rε  is measurement 

noise. 
 To ensure the ionospheric free linear combination 
of carrier phase measurements at the order of 
magnitude of truly measured values, this combination 
can then be written as: 
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 where k1 and k2 are arbitrary factors to be 

determined in such a way that S
IFR,ϕ  no longer 

contains any influence of the ionosphere. 
 Postulating that the ionospheric influence in 
equation (11) on this linear combination disappear: 
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 For convenience, choose k1 = 1, then obtain 
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So the ionospheric free linear combination of 
carrier phase measurements (12) can be rewritten as: 
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As for GLONASS satellite, the factor 
9/7

122 −=−= LL ffk  is a non-integer value, the 
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ionospheric free linear combination ambiguity 
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 is no longer 

an integer value. To retain the integer nature of this 
value, sometimes the so-called L0 combination 
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ionospheric free linear combination. However, under 
the assumption that the measurement noise of L1 
carrier phase is identical to that of L2 carrier phase, 
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This is about 5.26 cm for GLONASS frequency 
number 1. 

For GPS, 77/60
122 −=−= LL ffk , the L0 

combination noise is 
ϕϕϕ σσσ ⋅≈⋅+= 6.976077 22
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which corresponds to approximately 0.6 cm. 
High noise and small wavelength have precluded 

this combination from having any significant 
importance for GPS carrier phase positioning. But for 
GLONASS, these values are much more favorable. 
Today’s GLONASS receivers provide a noise level 
around 0.5-1 mm (1 sigma) for carrier phase 
measurements [5]. This would mean a noise level of 
0.57-1.14 cm for the L0 combination, well below the 
5.26 cm wavelength of the L0 signal.  
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Fig. 4. Deviations of baseline length 

20 hours’ real data are used to test the 
performance of the ionospheric free linear 
combination. The ionospheric free observations of 
GPS are created with the standard algorithm used by 
most software such as GAMIT or BERNESE, 
observations of GLONASS are created with 
forenamed algorithm. 20 hours’ real data are 
subdivided to 20 segments, each 1 hour’s. The 
baseline length is calculated and compared with the 
“true length” obtained with the 20 hours data. 

Deviations of each hour’s baseline length are shown 
in figure 4.  

It can be seen that the differences between 1 
hours’ results and the “true length” are all below 4 
mm, and the RMS of these differences is about 2mm, 
higher than the results of [6]. 

5. Conclusion  

In combined GPS/GLONASS data processing, 
the differences between the system times must be 
accounted for. Two procedures to reduce the error of 
time reference differences between GPS and 
GLONASS are discussed. As can be seen from the 
real data tests, the method of introducing the fifth 
unknown as the difference of system time is more 
desirable. And the characteristic of the unknown is 
independent of receivers. When differences of the 
same kind measurements are formed between two 
receivers, this unknown cancels out. 
 The error with respect to GLONASS satellite 
coordinate is mainly composed of the error of orbit 
integration and the error of coordinate transformation. 
As shown in above, the synthetic influence of the two 
errors is about 1 m (1 sigma), which is sufficient for 
close range differencing navigation and positioning.  

The ionospheric free linear combination 
ambiguity S

IFRN ,  is not an integer value, the L0 
combination can be formed to retain the integer nature 
of ambiguity. High noise and small wavelength have 
no practical importance for GPS carrier phase 
positioning, whereas it is much more favorable for 
GLONASS. Results of real data show the effectivity 
of L0 combination for GLONASS observations 
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